
nincn

Tec hn ica I
Paper
2738

~ w n w n

September 1987

-

the Application of the

Daniel L. Palumbo
and George B. Finelli

NASA
Technical
Paper
2738

1987

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

A Technique for Evaluating:
U

the Appliiation of the
Pin-Level Stuck-At Fault
Model to VLSI Circuits

Daniel L. Palumbo
and George B. Finelli
Langley Research Center
Hanapton, Virginia

Identification of commercial products in this report is
included only to adequately describe the equipment and does
not constitute an official endorsement, either expressed or
implied, of such products by the National Aeronautics and
Space Administration.

Contents
. Summary 1

Introduction . 1
Background . 1

The detection process . 1
Reconfiguration . 2
The validation methodology . 2

Objective and Approach . 2

Experiment Definition . 3
Experiment Data and Analysis . 3

Static error behavior . 3
Dynamic error behavior . 3
Wilcoxon’s rank-sum test . 4

Assumptions . 4
VLSI circuit model: the virtual microprocessor 4
Fault model: the stuck-at . 5
Datamodel . 5
The error model . 5

Results . 6
Results of Static Error Analysis . 6
Results of Dynamic Error Analysis . 6
Comparison of Internal and Pin-Level Fault Behavior 7

Discussion . 7

Conclusion . 8

Appendix A-Model of Failure-Recovery Process 9
Appendix B-Experiment Configuration and Procedure 10

TheVmp . 10
The Fibonacci Series . 10
The Fault Injector . 11
The Logic Analyzer . 11
The Experiment Configuration . 11
The Experiment Procedure . 11

Appendix C-Fibonacci Program Listing 13

References . 15

Tables . 16

Figures . 21

iii

I

Summary
This paper describes a technique by which a re-

searcher can evaluate the capability of the pin-level
stuck-at fault model to represent true error behavior
in very large scale integrated (VLSI) digital circuits.
Accurate fault models are required to conduct the
experimentation recommended by an earlier study
of proposed validation methodologies for highly re-
liable fault-tolerant computers e.g., computers with

sion). The validation experiments are designed to
measure the recovery process parameters of fault-
tolerant computers.

The quality of the pin-level stuck-at fault model
is assessed by comparison of the error behavior which
results from faults applied at the pins of a VLSI cir-
cuit with the error behavior produced by faults ap-
plied to gates internal to the VLSI circuit. The inter-
nal, gate-level faults are assumed to produce “true”
error behavior. Error behavior is observed at the pins
of the VLSI circuit, in this case a “virtual micropro-
cessor.” In the presence of internal faults, the error
behavior at the pins of the virtual microprocessor is
more dynamic than static.

To study the dynamic error behavior, a hypothe-
sis is put forth that pin-level stuck-at faults produce
error behavior that is similar to the error behavior
caused by internal device failures. The hypothesis
is tested with Wilcoxon’s rank-sum test. It is found
that this technique is tractable and has the poten-
tial to produce meaningful results. Using a sample
data set, a set of bar charts are derived which show
the tendency to reject the hypothesis. Many of the
pin-level faults exhibit very little rejection. However,
in some test cases, the results strongly suggest rejec-
tion, especially in the modeling of the duration of
errors. A firm conclusion cannot be drawn because
of the preliminary nature of the sample data. The
results do imply that the application of the pin-level
stuck-at fault model requires careful consideration.
Additional experimentation is needed to confirm the
use of the model before it can be used with confidence
when validating highly reliable digital systems.

a probability of failure of 10- 6 for a 10-hour mis-

Introduction
The ability to simulate faults in digital circuitry

is an important issue in a proposed methodology
for validating the failure recovery process in fault-
tolerant computers (ref. 1) . A common method of
simulating a fault in a physical circuit is fault injec-
tion on the pins of the circuit components (ref. 2).
Typically, the injected fault takes the form of a
“stuck-at” fault (ref. 3). The accuracy with which
an injected fault models its physical counterpart is

important if confidence in the validation process is
to be established. When high reliability is specified,
such as a probability of failure of lop9 for a 10-hour
mission, high confidence levels and, therefore, accu-
rate fault models are required. Reference 1 cautions
that the pin-level stuck-at fault model may not be
adequate for circuits composed of very large scale in-
tegrated (VLSI) components. A technique by which
the capability of the pin-level stuck-at fault modeling
can be evaluated is the subject of this paper.

As background, the fault recovery process is de-
fined and validation methods for the recovery process
are described. The objective and approach of this
work are then stated, followed by a detailed descrip-
tion of the experiment, the results, and conclusions.

Background
Fault-tolerant computers which are based solely

on redundant hardware and voting cannot meet
high-reliability requirements unless the failure rates
currently obtainable are reduced by an order of
magnitude (ref. 4). Today’s highly reliable fault-
tolerant system must incorporate a recovery process
to remove and, possibly, replace faulty components.
There are two important aspects of the recovery pro-
cess of a fault-tolerant system that can be exercised
by fault injection: the ability to detect the fault and
the ability to reconfigure successfully after the fault
has been detected.

The detection process. The presence of a fault in a
system is detected when erroneous system behavior
is recognized by a system monitor (voter, watchdog
timer, etc.). However, the existence of a fault does
not guarantee that the system will exhibit erroneous
behavior. The errors produced by the faulty com-
ponent must be propagated to the system monitor
level.

Two additional factors complicate fault detection:
different components may produce similar error be-
havior; and detected errors may be transient, that is,
not the result of hard faults. When presented with
ambiguous error behavior, isolation procedures (such
as a specific series of tests) locate the faulty compo-
nent. Verification procedures filter out transient er-
rors by logging the errors until, based on some heuris-
tic, a hard fault is declared. In this study, isolation
and verification are considered part of the detection
process. Both isolation and verification require extra
data, and therefore time, before the recovery process
can begin a reconfiguration.

The detection process can thus be divided into
three tasks: error propagation, fault isolation, and
fault-type verification. The time spent performing
each of these tasks depends a great deal on which

component is faulty in the circuit. Yet these times
are more directly dependent on the error behavior
observed by the monitor. The error behavior is
not solely a product of hardware characteristics but
depends to a large degree on the input presented to
the hardware (e.g., software).

Reconfiguration. A successful recovery results
in the logical restructuring of the system around
the fault, that is, reconfiguration. Previous studies
have shown that the reconfiguration time is not as
dependent on the fault present in the circuit as is
the detection time (ref. 2).

Reconfiguration can be accomplished in hardware
or software. With hardware reconfiguration, extra
switching circuitry is added to enable the removal
and replacement of elements which contain faulty
components. The switching circuitry can be in-
stalled at different levels. The Fault-Tolerant Multi-
Processor (FTMP), for example, reconfigures at the
processor-memory-bus interfaces (ref. 4). The Fault-
Tolerant Processor (FTP) switches entire computers
into and out of the computer interstage (ref. 5).

Software reconfiguration is accomplished by
rewriting system data structures which control com-
munication and scheduling procedures. The faulty
processors remain connected to the intercomputer
network, but their outputs are ignored during com-
munication and voting and tasks are not allocated
to them during scheduling. A good example of this
paradigm is the Software Implemented Fault Toler-
ance (SIFT) computer (ref. 6).

The validation methodology. Two parameters can
be used to characterize the recovery process. They
are the percentage of faults for which the recovery
process performs the correct action (in the presence
of the fault and its resulting errors) and the time
taken to complete the process. The first parameter
will be referred to as the coverage of the recovery
process; the second will be referred to as the total
recovery time.

In an effort to define a validation methodology
which could determine whether a candidate fault-
tolerant computer meets the requirement for life-
critical digital avionics (i.e., with a probability of
catastrophic failure of lop9 for a 10-hour mission),
a previous study has suggested that recovery param-
eters can be obtained by applying pin-level stuck-at
faults to the fault-tolerant computer during carefully
controlled experiments (ref. 1). The parameters are
then inserted into models of the failure-recovery pro-
cess (Markov models or Markov model derivatives) to
calculate the probability of failure. One such model
is described in appendix A.

With the assumption that the processor fail-
ure rate can be obtained from sources such as
MIL-HDBK 217D (ref. 7), all that remains to com-
plete the model is to derive a value for the recovery
rate. As mentioned above, it has been suggested that
the recovery rate be obtained through experimental
measurements.

The recovery rate measurement must be accurate
enough to establish confidence in the computation of
the probability of failure. As explained previously,
the detection time is a part of the recovery time
and depends on the error behavior generated by the
fault. Therefore, the degree of experimental accuracy
will depend on how well the fault injection stimulus
reproduces true erroneous behavior in the target
system.

Injecting a fault at the pin level simulates a condi-
tion in which the error has already propagated from
the lower-level device. Because of this, pin-level fault
injections are not suitable for measuring the error
propagation time component of the detection pro-
cess. Thus, it is assumed that pin-level fault injec-
tions will be used primarily in experiments designed
to measure the remaining time components of the de-
tection process. These processes (i.e., the fault isola-
tion and verification processes) have error behavior
symptoms as their input. The fault-injection model
must produce error symptoms similar to true error
behavior to be effective. To determine the applica-
bility of the pin-level fault model, the technique de-
scribed in this paper produces a measure of the simi-
larity between true error behavior and error behavior
created by fault injection. To demonstrate the tech-
nique, it is assumed that if dissimilar error behavior
is observed on fewer than 10 percent of the pins of
the VLSI circuit under test, then acceptable exper-
imental accuracy will result. The 10-percent limit
is inferred from the discussion in appendix A, which
concludes that it is necessary to measure experimen-
tal parameters to within an order of magnitude of
the correct value.

Objective and Approach
The objective of this work is to define a technique

by which insight can be gained into the ability of the
pin-level stuck-at fault model to simulate true error
behavior in VLSI digital circuits. To this end, the
error behavior caused by pin-level stuck-at faults will
be compared with true erroneous behavior in VLSI
digital circuits. The stuck-at fault model has been
accepted as a good model of gate-level fault behavior
(ref. 3). Transferring the stuck-at model to the pins
of an integrated circuit presents little difficulty for
small-scale integrated (SSI) circuits and for some
medium-scale integrated (MSI) circuits because of

2

the proximity of the gates to the pins. However,
the pin-level stuck-at model may not apply well to
VLSI circuits. With a VLSI circuit, the pins of
the integrated circuit are more at the level of the
system monitor than at the level of the faulty device
(consider the self-checking dual processor in fig. 1).
At the pins of a VLSI circuit, the objective is to
model error behavior rather than fault behavior.

To compare the error behavior generated with
pin-level stuck-at faults to true error behavior, it
is necessary to obtain samples of both. Obtaining
samples of a VLSI chip error behavior when subjected
to pin-level faults is straightforward. Acquiring the
response of the same chip to internal faults is more
difficult and requires some type of simulation of the
chip. The approach used in this experiment was to
create a “virtual microprocessor” from an existing
SSI-MSI processor by drawing a boundary around
the components that would be found inside a chip
if indeed the processor were a chip. The resulting
virtual microprocessors (Vmp) consists of 48 pins of
data, address, and control. The Vmp allows faults to
be injected on its internal devices while its behavior
is recorded at its boundaries.

Once samples of the error behavior are obtained,
two types of analysis are performed. First, the
tendency towards static error behavior is derived.
Static error behavior is defined as a condition where
a pin does not change state because of a fault within
the circuit. This condition closely resembles a pin-
level stuck-at fault. The second analysis examines
the dynamic error behavior of the pins (i.e., errors are
present and the pin is changing state). The dynamic
error behavior of internal and pin-level faults are
compared by formulating the hypothesis that their
respective data samples are taken from the same
general error behavior distribution. If this hypothesis
is rejected, then it will be concluded that pin-level
stuck-at faults are “not very good” at simulating true
error behavior in VLSI circuits.

Experiment Definition
The definition of the experiment is divided into

three sections. The first section describes the data
that were gathered and the analysis that was per-
formed. The second section defines assumptions
made which support the experiment approach and
analysis. The third section contains the details of
the experiment configuration and procedure and is
found in appendix B.

Experiment Data and Analysis

To produce data descriptive of error behavior, a
faulted system is compared with a fault-free version

of the system.
error behavior are analyzed, static and dynamic.

In this investigation, two types of

Static error behavior. If a pin does not change
state during a test, it is said to exhibit static behav-
ior. If the test is conducted in a fault-free condition,
then this is normal static behavior. If a pin that was
not normally static becomes static during a fault in-
jection test, or if a pin that was normally static re-
mains static but in an inverted state, the pin is said
to exhibit static error behavior. A pin-level stuck-at
fault of the correct polarity is indiscernible from a
pin exhibiting static error behavior.

One evaluator of static error behavior is the per-
centage of pins of the Vmp that exhibit static error
behavior during faulted runs. A large percentage of
pins exhibiting static error behavior would indicate
that the pin-level stuck-at model has some justifica-
tion for VLSI circuits. However, a small percentage
of pins exhibiting static error behavior is not suffi-
cient evidence to conclude that the pin-level stuck-
at model is inaccurate. The dynamic error behavior
must be considered also.

Dynamic error behavior. Dynamic error behavior
is defined by two values, the time between errors and
the duration of errors. Figure 2 illustrates how these
values are derived. The first trace in figure 2 is of a
Vmp pin during a fault-free test. The second trace is
of the same pin, but now the effect of an internal fault
is manifested as different behavior. The third trace is
derived as the exclusive-or of the first two traces and
represents the error behavior of the second trace. In
other words, when the error trace is “high” the value
of the pin during the faulted run is opposite that of
the fault-free run. The time between errors (TBE)
is defined as the time elapsed between rising edges
of error pulses. The duration of errors (DE) is the
length of the error pulses.

A pin can exhibit both static and dynamic error
behavior. If an induced stuck-at fault is applied to a
pin which behaves dynamically during the fault-free
run, it will behave statically (i.e., it will not change
state during the test). However, from the definition
of dynamic errors, TBE and DE characteristics can
be observed.

Any single internal fault which exhibits dynamic
error behavior will produce samples of TBE and DE.
The TBE and DE data can be thought of as samples
from an error behavior population. Thus, both the
pin-level stuck-at faults and the internal faults can
be associated with general, but possibly different,
error behavior populations. If the error behavior
population associated with pin-level stuck-at faults
can be shown to be different from the error behavior
population of the internal faults, one could conclude

3

that the pin-level stuck-at fault does not produce
error behavior similar to that produced by internal
faults.

Statistical hypothesis testing can be used to de-
termine whether two samples were taken from the
same population. The strength of hypothesis testing
is in rejecting the hypothesis; this is called a signifi-
cant result. If the hypothesis is not rejected, all that
can be said is that for this particular case the null
hypothesis holds. If the hypothesis of identical pop-
ulations is rejected, it can be concluded that the null
hypothesis does not hold for this particular case and,
therefore, does not hold in general.

Wilcoxon’s rank-sum test. Wilcoxon’s rank-sum
test (also known as the Mann-Whitney test) can be
used to test the hypothesis of identical populations
(ref. 8). Given two data samples, si and y j , the
rank-sum method tests for a shift in the samples
which would indicate that the samples came from
different populations. In our case, for example,
the x i are samples of error behavior taken during
internal fault tests and the y j are samples taken from
pin-level fault tests. A test statistic w is derived
for x i and y j by summing the ranks assigned to
the members of each sample after x i and yj are
merged and ordered. A function W is calculated by
constructing the distribution of all possible orderings
of two samples. Values for W are found in textbooks.
(See ref. 8, table A.5 for an example.) The decision
rule for the test can be stated as follows. Reject the
null hypothesis (Ho) at level of significance a if the
test statistic w is greater than the (1 - a) / 2 quantile
of W . For example, if a significance level of 0.95 is
desired and the two samples have sizes of 3 and 6,
the (1 - a) / 2 quantile of W is 22. (See table A.5 of
ref. 8.) If w > 23, then Ho is rejected. The IMSL
subroutine NRWST is used to perform this test on
the data (ref. 9).

Assumptions

The assumptions stated in the following sections
describe models of behavior which together comprise
the foundation for the experimental approach and
analysis. Two models are used during the experi-
mentation. One simulates VLSI circuit function and
the other fault behavior. A third model describes
the characteristics of the data to which the Wilcoxon
test are applied. A final model defines what is meant
by an error.

VLSI circuit model: the virtual microprocessor.
As previously stated, the purpose of the experimen-
tation is to obtain the error behavior characteristics,
that is, samples of time between error (TBE) and

duration of error (DE) at the pins of a VLSI circuit.
For the best results, the errors should be produced
by the types of faults which would occur naturally
within the VLSI circuit. Except for the case wherein
hundreds of VLSI circuits are available for destruc-
tive fault-injection testing, the VLSI circuit must be
simulated at a level consistent with the fault model
that will be applied to the circuit.

A VLSI circuit simulation was created by consid-
ering a Bendix BDX-930 processor as a 48-pin vir-
tual microprocessor (Vmp). (See section entitled The
V m p in appendix B.) The BDX-930 is a 16-bit proces-
sor constructed mostly of bipolar SSI and MSI logic.
The 48 pins of the Vmp are mapped to 48 signals
within the BDX-930 processor. The 48 signals cor-
respond to 16 memory address lines (the MAR bus),
16 data lines (the DAT bus), and 16 miscellaneous
signals.

Because the circuit simulation is a processor, the
simulation must be executing a program to produce
results and, therefore, errors. The program chosen
produces a Fibonacci series. (See section entitled The
Fibonacci Series in appendix B.)

The following assumptions support the use of the
Vmp as a VLSI circuit simulator.

1. The BDX-930 is a modern processor of ad-
equate complexity so that i f it were produced as a
single chip, i t would be considered to be a V L S I
device.
In support of this assumption, consider that the
BDX-930 has a microprogrammed pipeline architec-
ture and contains 5000 to 6000 gates. Although the
BDX-930 is not a state-of-the-art processor and the
gate count is less than the 10000 usually attributed
to VLSI circuits, the authors believe this t o be a fair
assumption.

2. The Fibonacci series program represents typi-
cal program execution.
Fibonacci series calculation has been used in past
studies (refs. 10 and 11) to represent typical program
behavior. The program used in this test was written
to reflect as wide an instruction mix as possible. (See
appendix B.) If the data gathered with the Fibonacci
program cause the Ho hypothesis to be rejected, it
can be expected that Ho will be rejected for most
programs. This is believed to be true because of the
simplicity and directness of the Fibonacci program.
However, the converse is definitely not true. If
Ho is not rejected, very little can be said about
the behavior expected from other programs. (This
assumption may be weak. See section entitled The
Fibonacci Series for a discussion.)

3. The V m p allows su f i c i en t access to i ts inter-
nal devices fo r fault injection.

4

The Vmp contains approximately 100 integrated cir-
cuits, most with either 14 or 16 pins. If the pins of the
integrated circuits are considered to be connected to
devices that would actually be inside the Vmp, then
there is access to about 30 percent of the devices in-
ternal to the Vmp (1800 pins out of an estimated
5400 gates). The implication of the assumption is
that access to this subset of devices is adequate if
Ho is rejected. During actual testing, a small sample
was taken from this subset.

Fault model: the stuck-at. The stuck-at fault
model is derived from the tendency of a switch to
fail either stuck open or stuck closed (a transistor
in a digital circuit acts as a switch). Other failure
modes can be modeled as special cases of stuck-ats.
For example, an intermittent contact can be modeled
as a recurring, short-term stuck open failure. The
emphasis here is placed on the binary nature of the
device and the fact that the device has a tendency to
fail to one state or the other.

As mentioned above, there is access to approxi-
mately 1800 devices within the Vmp. The stuck-at
fault model was chosen to represent the failure modes
of those devices. The decision to use the stuck-at
model is based on the following assumptions.

4. The accessible devices of the V m p are logic
gates.

5. The stuck-at fault model is adequate for gate-
le ve 1 injection.
It may at first seem unwise to test the validity of the
pin-level stuck-at fault model under an assumption
that the stuck-at model is adequate. However, the
important issue is the scope of the stuck-at model.
Given that the stuck-at model faithfully represents
the failure modes of a logic gate, the question is
whether the model can be extended to cover the error
behavior at the boundary of a large circuit of gates.

Data model. The Wilcoxon test compares two
data samples to test the hypothesis that the samples
were taken from the same population. One set of
samples, taken as the true error behavior, is acquired
from the 48 pins of the Vmp with internal stuck-at
faults. The second set of samples is taken with one or
more pins of the Vmp stuck at zero or stuck at one.
The true error behavior samples are compared with
samples for both pin-level stuck at one and stuck at
zero to test whether they came from the same general
error behavior population.

Given that two data sets are obtained with m
samples in x and n samples in y (x being the true
error behavior and y being the pin-level stuck-at
behavior), application of the Wilcoxon test t o x and
y implies the following assumptions.

6. xi = ei (z = 1, 2, . . . , m) and y j = e j
+ D (j = m + 1, m + 2, . . . , m + n) where
x and y are observable, e j are unobservable, and D is
an unknown shift in y .

7. The N e-values (N = m + n) are mutually
independent.

8. The e-values are sampled f rom the same con-
tinuous population.
With respect t o this model, the hypotheses of the
Wilcoxon test can be stated as

Ho: D = O
H i : D # O

Assumption 6 proposes that x and y differ by a
constant, offset D. If Ho is rejected (i.e., it is found
that D = 0), then a shift will be found in the data
and we will know that x and y were not taken from
the same population.

Assumption 7 may be used with confidence. Pre-
cautions were taken to ensure that the system was
reloaded and initialized to the same state prior t o
each fault-injection test. (See section entitled The
Experiment Procedure in appendix B.) However, at-
tempts for a complete system initialization may have
fallen short. See section entitled The Fibonacci Se-
ries in appendix B for a discussion.

The error model. To correctly interpret an anal-
ysis of error behavior, it is necessary to know what
is meant by an error. Consider the block diagram
in figure 1. The system described by the block dia-
gram can be considered to be a tightly coupled self-
checking dual processor. The system monitor (com-
parator) compares the pin-level state of processor A
to that of processor B. If either processor deviates
from the other, the monitor signals an error.

The block diagram can also be used to describe
the error analysis procedure used in this study. For
example, let the block labeled processor A represent
data acquired during the fault-free run and the block
labeled processor B be data acquired during fault-
injection tests. Thus, the system monitor becomes
the analysis procedure which steps through the data
from the fault-free and faulted files and signals an
error upon miscomparison. However, the process of
comparing these two files is complicated by two fac-
tors. First, the processor does not gate data onto its
buses every clock cycle. Between bus transactions
the state of the bus is undefined, and therefore a
comparison is meaningless. Second, the faulted pro-
cessor, given that it might follow a different instruc-
tion path, might not gate data onto the bus on the
same cycle as in the fault-free run. The following two
assumptions serve to eliminate this ambiguity.

5

9. The state of the pins is observed when the
fault-free run has data enabled onto its buses.

10. An error has occurred when the state of a pin
in a faulted r u n is observed to di$er f rom the state of
the corresponding pin an the fault-free run.
The scope of the error analysis has been limited to
the behavior of the memory and data buses.

Results
A total of 136 fault injections were applied to

signals both internal to (112) and at the pin-level
boundary of (24) the Vmp. The faulted behavior of
the Vmp was observed at the pin-level boundary and
recorded in what will be referred to as the “results”
files. (See appendix B.) The 68 signals to which the
stuck-at one and stuck-at zero faults were applied
were chosen from a signal list of the BDX-930. Care
was taken to ensure that injections were applied
to each chip in the BDX-930. Of the 136 fault
injections, 92 produced error behavior. The following
sections present the static and dynamic analysis of
these errors.

Results of Static Error Analysis

As explained in the section entitled Static Error
Behavior, there are two kinds of static pin behavior:
pins which are normally static in the fault-free run
and pins which become static due to the presence of
a fault. A total of 15 pins were found to be normally
static in the fault-free run.

A total of 92 faults which were applied to the
Vmp produced errors. During each fault, all 48 pins
of the Vmp were tested, yielding 4416 pin-tests
(48 pins * 92 test). Of the 92 faults, 62 created static
error behavior among 1 or more of the 48 pins.
In 4416 pin-tests, only 204 pins (z 5 percent) demon-
strated static error behavior. However, 219 normally
static pin-tests became nonstatic. The application
of stuck-at faults actually decreased static behavior.
This finding, while not totally unexpected, leads to
the analysis of the dynamic error behavior.

Results of Dynamic Error Analysis
To perform the dynamic error analysis, the

48 pins of the Vmp are broken down into 3 groups
of 16: the MAR bus, the DAT bus, and the signals.
Each pin-test yielded time-between-errors (TBE) and
duration-of-errors (DE) data. These data, which
quantify dynamic error behavior, are derived from
an analysis that is based on the definition of an error
as stated in assumptions 9 and 10. A program was
written which cycled through the fault-free and re-
sults files as if they were a tightly synchronized self-
checking pair. However the fault-free run was the

6

master. Values from the fault-free and results files
were compared only when a bus transaction was ini-
tiated in the fault-free run. The analysis presented
will be limited to the MAR and DAT groups because
the two buses represent general behavior rather than
unique functionality, represented by the signals.

Figures 3 to 6 are histograms of the TBE and
DE for the MAR bus and the DAT bus. Each
histogram shows data summed over all 16 pins in a
group for all 92 fault-injection tests which produced
error behavior, thus representing 1472 pin-tests. The
number of data points in each histogram depends on
the error activity; that is, more samples of TBE and
DE are obtained if, on average, the TBE and DE are
small compared with the sample period. Figures 3
and 4 show the number of errors that produced
TBE’s ranging from 1 to 350 cycles (1 cycle is 125 ns);
figures 5 and 6 show similar information for the DE
data. For example, in figure 3 a peak of 1900 errors
occur with a TBE of approximately 15 cycles.

If the data are further broken down according to
the type of operation (input, output, or instruction
fetch) taking place on the bus at the time of the er-
ror, different error behavior can occur. Input and
instruction fetch operations were found to be similar
to each other and to the combined TBE data as plot-
ted in figure 4. Output operations have a different
characteristic, as shown in figure 7. The plots of the
TBE during output operations demonstrate the type
of error behavior that a monitor which votes output
data will encounter.

The data presented so far illustrate gross error
behavior in that the samples taken on all pins for
all fault-injection tests were summed. These data
cannot be subjected to a hypothesis test without ad-
ditional assumptions which state that the individual
samples are from the same population and, therefore,
can be summed. Figure 8 is an example of data from
a single internal fault-injection test. The TBE sam-
ples for each pin on the DAT bus are represented in
“box plot” format.

In the box plot format, the width of the box is
proportional t o the number of points in each sample.
The lower perimeter of the box marks the 25th per-
centile; the upper perimeter is the 75th percentile.
The line through the box is the median. The bars
off the ends of each box mark the farthest points
within the fences, which are 1.5 box lengths below
the 25th and above the 75th percentiles. The crosses
mark points outside the fences (called outliers). Fi-
nally, the little squares within the z’s in them are
the means. As can be seen, the box plot format con-
denses the error behavior of an entire group into a
single plot without loss of information.

~ ~~
~

Comparison of Internal and Pin-Level Fault
Behavior

The error behavior of the system in response to
internal faults is compared with the error behavior
in response to pin-level faults. In the case of the
Vmp, pin-level faults are considered to be those faults
which occur at pins located at the boundary of the
Vmp (more specifically, the DAT and MAR buses).
Figure 9 is the box plot of the TBE on the DAT bus
which occurred in response to a stuck-at one fault
applied to the pin-level signal DATOO.

Comparison of figures 8 and 9 shows that pin-
level data (fig. 9) can produce error behavior similar
to that which occurs during internal faults (fig. 8).
This is not always the case. Figure 10 is an exam-
ple of different error behavior caused by an internal
fault. The Wilcoxon rank-sum test is used to obtain
a measure of how well the pin-level fault data match
the internal fault data. For each pin, two samples
are compared, and the hypothesis of identical popu-
lations is tested. For any single fault-injection test,
32 hypothesis tests are performed on both the TBE
and DE data. (There are 16 pins each on the DAT
and MAR buses.) A summary measure of the ability
of the pin-level fault to model the internal fault is
presumed to be the percentage of pins which reject
the hypothesis of identical populations. A large per-
centage of rejection indicates a small likelihood that
the internal faults are modeled well.

Figures 11 to 20 are bar charts summarizing the
results of the hypothesis testing for the TBE and DE
data which resulted from stuck-ats applied to signals
DATOO, DAT07, DAT15, MAROO, and MAR07. The
results of stuck-at one and stuck-at zero faults were
found to be similar and therefore are combined. A
total of 224 tests are possible, resulting from a stuck-
at one pin-level fault versus 112 internal faults plus
a stuck-at zero on the same pin versus 112 internal
faults. Because some of the internal faults produced
insufficient data for a test, the bar charts display the
results of about 150 tests. These displays can be best
described by considering a specific example.

Figure 11 shows the results of comparing the
stuck-at faults injected on DATOO to all internal
faults. The first bar of figure 11 represents the
number of tests which rejected the hypothesis on less
than 10 percent of the pins. Remember, there are
16 data bus pins and 16 memory address bus pins.
According to figure 11, about 115 of the tests resulted
in rejection of the null hypothesis on 0 to 10 percent
of the 32 pins.

All the TBE results are alike, with most falling
into the 10-percent rejection region. The DE results

are more weighted at 40 percent and above than the
TBE results. A noteworthy example of this is the
DAT07 DE graphs (fig. 17).

Discussion
The dynamic error behavior resulting from in-

ternal and pin-level stuck-at faults has been char-
acterized by the time between errors (TBE) and the
duration of errors (DE). The similarity of the two
sample types (pin-level vs internal faults) was tested
with Wilcoxon’s rank-sum test. It has been found
that single, pin-level stuck-at faults produce dynamic
error behavior characteristics which are similar to
single internal faults in many cases. A closer look
into the underlying mechanism which causes the er-
ror behavior provides a plausible explanation for this
similarity.

Two types of aberrant processor behavior are
defined. A crash is said to occur when the processor
jumps outside the program limits. Skewing occurs
when one or more instructions use one or more extra
clock cycles to execute than normal. When skewing
occurs, even though the processor may follow normal
program flow, error behavior similar to a crash may
be observed. This is because the comparison of the
two runs (faulted and fault free) which produces
the errors is synchronized by the fault-free run and,
therefore, a single clock cycle of skew in the faulted
run produces a great deal of “crashlike” errors.

Out of the 80 internal faults which produced
errors, 34 caused a crash. Of the 46 remaining
noncrashed runs, 30 were skewed. Thus, 80 percent
of the internal faults either crashed or were skewed
and are therefore likely to exhibit the same error
behavior. Of the 10 pin-level faults tested which
produced errors, 100 percent either crashed or were
skewed. This puts all the tests of pin-level faults into
the same behavioral category as a large majority of
internal faults.

Another interesting observation is that the TBE
samples are more likely to be similar than the DE
samples. This may be due to a correlation between
the TBE and the average instruction execution time.
The TBE histograms (figs. 3 and 4) show that most
TBE’s lie between 10 and 20 clock cycles (125 ns
per cycle). This matches well the average instruction
execution time of the Vmp of 1 to 2 ps and implies
that once an error goes away it is likely to return in
one or two instructions. The DE histogram in figure 5
does not exhibit this characteristic. The histogram
peaks at 1 or 2 cycles and drops to zero at 30 cycles.

Besides the suggested correlation of TBE to in-
struction execution times, the similarity in behavior
of TBE sample is related to three of the assumptions.

7

Assumption 2 states that the Fibonacci program rep-
resents typical program behavior. This is true until
the processor crashes. From that point on, the be-
havior is unrelated to the Fibonacci program but to
sonic pattern in a large block of undefined memory.
Consistent error behavior may be related to the pres-
ence of a large block of undefined memory through
one of two mechanisms. The randomness of the un-
defined memory may yield consistent error behavior.
Given a completely random memory pattern, similar
behavior would result no matter where the processor
executed in memory. Alternatively, after a few fault
injections, the undefined block of memory may tend
toward the same constant pattern. If, for example, a
crash tends to write zeros in memory (which are no-
operation instructions in the Vmp), then, after a few
crashes, the once undefined block of memory is now
well defined as a long string of no-operation instruc-
tions. This mechanism violates the independence as-
sumption. If the test program had been larger, fewer
jumps outside its range could have occurred. If the
program resided in read only memory, modification
of executable code could not occur. These additional
factors might have produced entirely different behav-
ior than that observed with the Fibonacci program.

Assumption 9 states that the comparison of the
test and fault-free files is to be synchronized with
the execution of the fault-free file. Thus, an error
cannot occur unless the fault-free run initiates a bus
transaction. This type of analysis selectively deletes
a great deal of error behavior. Performing a com-
parison whenever either of the two runs initiated a
transaction may have produced different error behav-
ior than that observed.

The end result of this abundance of similar error
behavior is that the test hypothesis of identical pop-
ulations is not overwhelmingly rejected. With the
DATOO data used as a n example and the assumption
of a desired rejection limit of 10 percent or less, con-
sider that less than 25 percent of the fault-injection
tests analyzed for TBE exceed the 10-percent limit.
Analysis of the DE data, often a better discrimina-
tor, results in about 55 percent of the fault-injection
tests exceeding the 10-percent limit. The pin-level
fault model might be rejected based on the poor per-
formance exhibited by the DATOO DE data alone.
However, when the results of testing pin MAR07
are considered, both TBE and DE analysis have less
than 15 percent of the tests exceeding the 10-percent

rejection limit. Clearly the pin-level stuck-at fault
model has some modeling capability.

Because of the specific attributes of this experi-
ment, the finding of similar error behavior between
pin-level and internal faults cannot be applied in gen-
eral. The amount of rejection observed is adequate to
raise serious doubts as to the usefulness of pin-level
fault injection in the validation of highly reliable sys-
tems where accurate fault models are necessary.

Conclusion
A technique has been described by which the

modeling capability of the pin-level stuck-at fault
can be assessed. The technique has been shown
to be tractable and has the potential to produce
meaningful results. The technique was applied to
data acquired during a small-scale fault-injection
experiment. Conclusions drawn from these data are
thus limited in scope. However, it was found that
a pin-level stuck-at fault can generate error behavior
very similar to that produced by internal faults. This
occurs mainly when the faults (both internal and pin-
level) result in a processor crash. Thus it seems that
the pin-level stuck-at fault may be used to study a
system’s response to a large class of faults which are
known to cause a processor to crash. However, this
leaves many other fault classes which are not modeled
well by the pin-level fault. It is recommended that, if
the pin-level stuck-at fault model is being considered,
additional experimentation be performed to establish
when it can be used with confidence. In particular,
these experiments should precede any attempt to
use the model when validating highly reliable digital
systems.

The value of this work can be seen as twofold. It
provides an analysis of the pin-level stuck-at fault
modeling capability in very large scale integrated
(VLSI) circuitry. If a researcher requires a high
degree of accuracy over all fault classes, the pin-
level stuck-at fault may be discarded based on these
results. However, given the need for a more definitive
result, this work also establishes an experimental
procedure and analysis techniques to be used in
future experimental efforts of this kind.

NASA Langley Research Center
Hampton, Virginia 23665-5225
June 25. 1987

8

Appendix A
Model of Failure-Recovery Process

Consider the model of a failure arrival-recovery
process shown in figure 21. The recovery process,
which is assumed to have perfect coverage, is modeled
with three types of states. State G is the good, or
nonfaulty, state. A single processor fails with rate X
to state A, or the active fault state. From state A ,
the process continues to state R, the recovered state.
The rate S at which the system executes the recovery
process is the inverse of the total recovery time. The
values G, A , and R denote the number of processors
in each state. The state of the process as a whole is
defined by the state vector (G, A , R).

System failure is calculat,ed by summing the prob-
abilities of the following two events:

1. All processors have failed, G = 0 (lack of
spares).

2. The voter has been defeated, A > G (recovery

The accuracy required in estimating recovery rate
can be illustrated by the following example. Given a
quad redundant computer (i.e., a four-processor con-
figuration) which executes the recovery process de-
scribed by the model in figure 21, the following list of
probabilities and associated recovery rates has been

too slow).

derived with the SURE modeling tool (ref. 12). Each
processor is assumed to have a mean time between
failures (MTBF) of 20000 hours and, therefore. a
failure rate X of 5.0 x per hour.

100.0 3.00 x 10-
1000.0
10 000.0

It can be seen from these data that the recovery rate
must be known to be within an order of magnitude of
1000 per hour to give reasonable confidence that the
system exhibits a probability of failure on the order

If an experimental procedure is to be used to ob-
tain the recovery process coverage parameter, a much
higher degree of accuracy must be achieved. It can be
shown through use of a sensitivity analysis similar to
the one above that the coverage parameter must be
greater than 0.9999999. This value is equivalent to a
coverage failure once every IO’ trials. Observing such
a rare event is beyond the capability of most exper-
imental procedures. Fault-injection experiments will
most likely not be used to obtain this parameter.

of

9

Appendix B
Experiment Configuration and Procedure

following four steps:
The experiment procedure can be divided into the

1. Initialize system.
2 . Observe system state.
3. Stimulate system.
4. Record system response.

This series of steps is repeated for each run. System
initialization prior to each run ensures independence
as required by assumption 7. The system is the
Vmp performing a Fibonacci series calculation. The
stimulus is provided by fault injection. The state of
the Vmp is observed at its 48-pin boundary.

The system configuration upon which the exper-
iment was performed consists of the following four
components:

1. A system emulation-simulation (the Vmp)
2. A representative work load (the Fibonacci

3. A stimulus (fault injection)
4. A system monitor (a logic analyzer)

series)

The following sections describe these four compo-
nents, the combined configuration, and the procedure
which controlled the experiment.

The Vmp

As mentioned in the section entitled VLSI Cir-
cuit Model: The Virtual Microprocessor, the Vmp is
constructed from a Bendix BDX-930 processor. The
BDX-930 is a 16-bit pipelined processor with a min-
imum instruction execution time of 250 ns obtained
with the nominal 16 Mhz oscillator. At the heart
of the BDX-930 are four bit-slice processors. The
bit-slice processors contain the arithmetic and logic
unit (ALU) and 16 general purpose registers. Sur-
rounding the bit-slice processor chips are approxi-
mately 100 SSI and MSI circuits. These peripheral
circuits perform the following functions (see fig. 22):

1. Micro code sequence control
2 . Pipelined instruction decoding
3. Address processing
4. Data path buffering
5. Status registers
6. Timing and control
The signals chosen to represent the 48 pins of

the Vmp are listed in table I along with their as-
sociated BDX-930 chip and pin number designation.
The 48 signals are divided into 16 data bus sig-
nals (DATOO to DAT15), 16 memory address sig-
nals (MAROO* to MAR15*), and 16 miscellaneous

signals. The 16 miscellaneous signals can be classi-
fied as follows:

Clock: ABUF*
Power-on reset: POS and PON
CPU status: FOV, IND, LINK,

PFEIN, FLAGl, and FLAG2
Memory arbitration: MM*, MEMl,

MEM2, WEl , WE2, CDEO1, and CDEO2
The BDX-930 used in the experiment is part of

the Software Implemented Fault Tolerance (SIFT)
computer system, which is currently undergoing eval-
uation in the Langley Avionics Integration Research
Laboratory (AIRLAB). Access to and control of the
BDX-930 was obtained through the SIFT interface
available in AIRLAB. Further information on the in-
terface of SIFT, BDX-930, and AIRLAB can be ob-
tained in reference 13.

The Fibonacci Series

A program which produces a Fibonacci series was
chosen to exercise the processor during the fault-
injection tests. The elements j i of a Fibonacci series
are computed by the following sum:

where initially

This algorithm can be coded efficiently in assembler
code. However, what is desired is not an efficient,
compact program, but a program which represents
a good instruction mix. For example, to introduce
stack manipulation instructions, the algorithm was
coded as a recursive Pascal procedure. The Pascal
program was compiled into BDX-930 assembler lan-
guage (see appendix C) using SIFT’S Pascal cross
assembler. A halt instruction was inserted in the
assembler code between calls to the Fibonacci pro-
cedure to provide a checkpoint in the test when the
logic analyzer limited memory could be stored in a
data set. A data set would then contain an inte-
gral number of iterations. In the final program, the
results of one iteration fit in each data set. The re-
mainder of the data set was filled with the results
of executing a sequence of instructions which con-
tained operations such as shifting, integer multipli-
cation and division, and testing and branching.

Because the error behavior exhibited by a faulty
processor is the product of the physical nature of the
fault and the instruction codes executed by the pro-
cessor, the results of this study may be critically de-
pendent on the test program. If the processor takes

10

a wild branch out of the expected instruction stream
because of the fault, the error behavior becomes de-
pendent on the state of accessible memory. In this
study, the Fibonacci program used about 100 words
of the 32 K words available in the BDX-930. Al-
though the program was reloaded for each test, no
provision was made to set the unused memory to an
initial state. This oversight may contribute to a lack
of independence between each test.

The Fault Injector

The In-Circuit Fault Injector (ICFI) available in
AIRLAB was used to apply the stuck-at one and
stuck-at zero faults to the pins of the integrated
circuits within the Vmp. The ICFI can be connected
directly to the subject pin without extending the
integrated circuit from the printed circuit board. The
ICFI can be controlled manually from a front panel
or remotely as part of the SIFT AIRLAB interface.
The ICFI also has an external trigger available. The
external trigger provides an experimenter with the
flexibility of being able to set the fault parameters
from the host computer while fault activation is
controlled by an external signal from the experiment
apparatus. This was the mode used during the fault-
injection tests with the external trigger controlled by
the logic analyzer.

The Logic Analyzer

The logic analyzer has 6 channels of 25-Mhz ac-
quisition and 16 channels of pattern generation data.
All 48 pins of the Vmp were acquired (see table I),
plus the 7 test signals shown in table 11.

Signal A* is an 8-Mhz clock which was used as the
logic analyzer external clock. The 512-word memory
capacity of the logic analyzer thus provided a 64-ms
data acquisition window.

The signals TDR*, TIB*, and EOUT* define the
operation occurring on the DAT bus. The TDR* is
asserted during data input, TIB* is asserted during
instruction input, and EOUT* is asserted during
data output.

Signal HLTLP, which indicates whether the
BDX-930 is running or halted, was used to activate
a procedure in the logic analyzer pattern generator
upon BDX-930 start-up. The procedure consisted of
a wait-for-interrupt loop in the mainline and a simple
interrupt handler which asserted one bit of the pat-
tern generator output. This bit was used to trigger
the ICFI.

The remaining signals were unused.

The logic analyzer provides local offline storage of
its setup on cassette tape, thus ensuring an identical
setup for each test session.

The Experiment Configuration

Figure 23 illustrates the experiment configura-
tion. Of the 55 signals acquired by the logic analyzer,
all but 2 (MAR15* and LINK) are available on the
BDX-930 backplane. A total of 38 signals (MAROO*
to MAR15*, DATOO to DAT15, FOV, IND, LINK,
PFEIN, FLAG1, and FLAGB) are located on the
BDX-930 CPU board. The remaining 10 Vmp signals
are found on the timing and control board. All seven
test signals are on the CPU board. The BDX-930
was removed from the SIFT test stand to allow ac-
cess to the backplane. The BDX-930 was still con-
trollable from the SIFT host environment through an
extension cable which connected the BDX-930 to the
SIFT test stand. A separate adapter provided power
(28 V dc and 110 V ac at 400 Hz).

One bit of the logic analyzer pattern generator
output was connected to the external trigger of the
ICFI. An interrupt procedure in the pattern gen-
erator which asserted this bit was enabled by the
BDX-930 HLTLP signal, that is, when the BDX-930
was started. The pattern generator signal activated
the fault, which had been programmed remotely into
the ICFI. The ICFI fault-injection probe was in turn
connected to a pin of the BDX-930. Table I11 is a list
of the pins tested during this experiment.

Finally, the logic analyzer connector was con-
nected to a port on the host computer. The logic an-
alyzer was controlled entirely through the host com-
puter. Acquisition memory was recovered over the
RS232 link and saved in individual data files.

The Experiment Procedure

With the assumption that the experiment con-
figuration is as described in the previous section,
the operator begins the experiment by entering the
SIFT environment on the host computer and defin-
ing the fault model for this test session with the SIFT
FAULT command. Under the control of a command
procedure, the test session occurs in three phases.

The operator
is asked for the fault number with which to start
the test session. Of approximately 1800 pins in the
BDX-930, 68 were chosen for testing and placed in a
fault definition file. (See table 111.) An effort was
made to sample pins from most of the integrated
circuits of the BDX-930. The ordering of the pins
in the table gives each fault an implied number.
Notice in table I11 that the odd-numbered faults are
stuck-at one faults and the even-numbered faults are

The first phase is initialization.

11

stuck-at zero faults. During testing, only one fault
type is used at a time; that is, all the stuck-at one
faults are done, followed by the stuck-at zero faults.
This is done to reduce operator input and, therefore,
the chance of error. If the testing occurred with
alternating stuck-at one and stuck-at zero faults, the
operator would have to modify the fault model with
the SIFT FAULT command before each test.

Once the fault number is entered, the second
phase of the test session begins. The ICFI is remotely
programmed according to the fault model definition.
The fault description (signal name, board name, chip
number, and pin number) associated with the fault
number is displayed on the operator’s terminal. The
operator then places the fault-injection probe on this
pin.

When the probe is set, the operator resumes the
procedure by entering the name of the results file.
File names are constructed according to the following
convent ion:

/Board Name/Chip Number/Pin Number/Fault Type/.DAT.

For example, the results of testing fault number 1

12

(SRAM15, stuck-at one) will be stored in file
CPU1107Sl.DAT. (See table 111.) The results of fault
number 86 (QII, stuck-at zero) will be stored in file
TC3206SO.DAT. The term CPU stands for the cen-
tral processing unit board and TC stands for the tim-
ing and control board.

Operator
intervention has been required for 4 items: entering
the fault type, fault number, and results file name,
and positioning the probe.

The second phase of the command procedure ends
with the following sequence: The Fibonacci program
is loaded into the test processor and started. The
processor initializes and comes to a programmed halt
just prior to entering the first Fibonacci iteration.
(See appendix C for program listing.) A remote halt
command ensures that the processor does not restart.

In the final phase of the test session, the processor
executes a series of Fibonacci iterations. The data
from each iteration is captured, compared with the
fault-free file, and stored. If no errors are found,
another iteration is performed. Up to 20 iterations
are processed.

This completes the operator input.

Appendix C
Fibonacci Program Listing

PROGRAM FIB

LOC OBJ MREF STMT

0100
0100 0424
0101 9000 1027
1000

1000 0000
1001 1002

1002
1004
1005
1006
1007
1008
1009
lOOA
100B

7F03420F
OOOF
59FA
5AFB
8F2F
46F8 1000
1408 101 1
1402 1ooc
1406 1011

lOOC 7F01421F
lOOE FF0094F3 1001
1010 8FFE

1011 0812
1012 5E00
1013 8 F l l
1014 5F00
1015 0823
1016 8F1F
1017 6E00
1018 8F12
1019 6E00
101A OOFO
lOlB 7F03410F
lOlD FF001200

101F 0100
1020 2048

- - - - - -

I *
2 *
3 *
4
5
6
7
8
9 *

10 *
11 A$2
12 A$5
13 *
14 FIB
15
16
17
18
19
20
21
22
23 *
24 A$l
25
26
27 *
28 A$O
29
30
31
32
33
34
35
36
37
38
39
40 *

ABS
ORG lOOH
CONT ER,lS
J U MAIN$
ORG lOOOH

FIX
LINK

PUSHM
TRA
LOAD
LOAD
IAR
CMP
JU
JU
JU

0
FIBER

0,3
0,15
1,-6,0
2,-5,0
2,-1
2,A$2
A$O
A$l
A$O

PUSHM 1,2
JSS* A$5
IAR 1 5 . ~ 2

ADDR 1,2
LOAD 2,011
IAR 111
LOAD 3,011
ADDR 2,3
IAR 1,-1
STO 2,031
IAk 112
STO 2,0,1
TRA 15,O
POPM 013
RPS 0

41 * Size: 47
42 *
43 *
44 *
45 A$6 LINK STAC$
46 A$8 LINK C1

FIBONACCI PROCEDURE

=DATA
=NUM

= I

=FIB

= ADDRESS DATA + NUM -1
= DATA [NUM]

= DATA [NUM+l]

= -+ DATA[NUM]

= + DATA[NUM+l]

13

LOC OBJ MREF STMT SOURCE STATEMENT
- - - _ - - - _ _ - - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1021 0001
1022 1047
1023 0001
1024 1002
1025 77FB
1026 2049

1027 54F8
1028 OOFO
1029 56F8
102A 55F8
102B BE00
102C 6E01
102D 1418
102E 7F00421F
1030 57F3
103 1 7F00423F
1033 FF0094F'l

1035 0061
1036 7D741D00
1038 0267
1039 0667
103A 8084
103B OB68
103C OF86
103D OC9B
103E 8291
103F OCBB
1040 0561
1041 0000
1042 FF0021AC
1044 0813
1045 FCOO
1046 14E8

0100
1047 0000
2047
2048
2049
204A

47
48
49
50
51
52
53
54

lOlF 55
56

1021 57
1022 58

59
60

1045 61
62

1023 63
64

1024 65
66
67
68
69
70
7.1
72
73
74

1040 75
76

1042 77
78
79
80
81

102E 82
83
84
85
86
87
88
89
90
91

A19
A$lO
A$11
A$12
A$7
A$13 *

MAIN$

LOOP

*

A$25

A$26

A$27

*

FIX
LINK
FIX
LINK
LINK
LINK

ENTRY
LOAD
TRA
LOAD
LOAD
STO
STO
JU
PUSHM
LOAD
PUSHM
JSS*
IAR
TRA
LDM
LCM
AND
SLSA
MPY
DIV
SUBR
SKCT
CLAO
DECNE
NOP
DACM
ADDR
HALT
J U

* Size: 26

STAC$ EQU
DATA BSZ
I RES
C1 RES
C2 RES

END

*

1
DATA
1
FIB
30715
C2

MAIN$
O,A$6
15,O
2,A$9
1,A$10
2,0,1
2,1,1
A$27
1,1
3,A$11
3,3
A$12
15,-2
6 1
7 , l l , O , l
6,7
6,7
834
6 8
836
9,11
9,A$25
11,11
6,A$26

10,12
173

LOOP

256
4096
1
1
1

MAINLINE AND INITIALIZATION
=STAC$

=I

=DATA i
= DATA + 1

BEGINNING OF ITERATION
I

I
=4 1

1

1 =f1b0

SEQUENCE OF INSTRUCTIONS ~

END OF 1 ITERATION

14

References
1. Gault, James W.; Trivedi, Kishor S.; and Clary,

James B., eds.: Validation Methods Research for Fault-
Tolerant Avionics and Control Systems- Working Group
Meeting II. NASA CP-2130, 1980.
Lala, Jaynarayan H.; and Smith, T. Basil, 111: Develop-
ment and Evaluation of a Fault- Tolerant Multiprocessor
(FTMP) Computer. Volume III-FTMP Test and Eval-
uation. NASA CR-166073, 1983.
Siewiorek, Daniel P.; and Lai, Larry Kwok-Woo: Test-
ing of Digital Systems. Proc. IEEE, vol. 69, no. 10,

4. Hopkins, Albert L., Jr.; Smith, T. Basil, 111; and
Lala, Jaynarayan H.: FTMP-A Highly Reliable Fault-
Tolerant Multiprocessor for Aircraft. Proc. IEEE,
vol. 66, no. 10, Oct. 1978, pp. 1221-1239.

5 . Smith, T. Basil: Fault Tolerant Processor Concepts
and Operation. The Fourteenth International Conference
on Fault- Tolerant Computing-Digest of Papers, IEEE
Catalog No. 84CH2050-3, IEEE Computer SOC. Press,

6. Goldberg, Jack; Kautz, William H.; Melliar-Smith,
P. Michael; Green, Milton W.; Levitt, Karl N.; Schwartz,

2.

3.

Oct. 1981, pp. 1321-1333.

c.1984, pp. 158-163.

Richard L.; and Weinstock, Charles B.: Development
and Analysis of the Software Implemented Fault- Tolerance
(SIFT) Computer. NASA CR-172146, 1984.

7. Military Handbook-Reliability Prediction of Electronic
Equipment. MIL-HDBK-217D, U.S. Dep. of Defense,
Jan. 15, 1982. (Supersedes MIL-HDBK-217C, Apr. 9,
1979.)

8. Hollander, Myles; and Wolfe, Douglas -4.: Nonparamet-
ric Statistical Methods. John Wiley & Sons, Inc., c.1973.

9. User’s Manual. IMSL Library-Problem-Solving
Software System for Mathematical and Statistical
FORTRAN Programming, Volume 3, Edition 9.2, IMSL
LIB-0009, IMSL, Inc., c.1984.

10. McGough, John G.; and Swern, Fred L.: Measurement of
Fault Latency in a Digital Avionic Mini Processor. NASA

11. Nagel, Phyllis M.: Modeling of a Latent Fault Detector
in a Digital System. NASA CR-145371, 1978.

12. Butler, Ricky W.: The SURE Reliability Analysis Pro-
gram. NASA TM-87593, 1986.

13. Green, David F., Jr.; Palumbo, Daniel L.; and Baltrus,
Daniel W.: Software Implemented Fault- Tolerant (SIFT)
User’s Guide. NASA TM-86289, 1984.

CR-3462, 1981.

15

Table I. The 48 Pins of Virtual Microprocessor

[An asterisk indicates active when signal low]

CPU

T C

Signal
MAROO*
MAR0 1 *
MAR02*
MAR03*
MAR04*
MAR05*
MARO6*
MAR07*
MAR08*
MAKOS*
MARIO*
MARll*
MAR12*
MAR13*
MAR14"
MAR15*
DATOO
DATOl
DATO2
DAT03
DATO4
DAT05
DATO6
DAT07
DAT08
DATO9
DATlO
DATIl
DATl2
DAT 13
DAT14
DATl5
FOV
IND
LINK
PFEIN
FLAG1
FLAG2
POS
PON
MM*
MEMl
MEM2
WE1
WE2
CDEOl
CDE02
ABUF*

7

Micro pin
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 "

Chip
u 4 3 p20
u 4 3 p l
U43 p16
U43 p14
U42 p20
U42 p18
U42 p16
U42 p14
U40 p20
U40 p18
U40 p16
U40 p14
u39 p20
U39 p18
U39 p16
u39 p14
U37 p18
U37 p17
U37 p14
U37 p13
U37 p8
u37 p7
u37 p4
u37 p3
U36 p18
U36 p17
U36 p14
U36 p13
U36 p8
U36 p7
U36 p4
U36 p3
U6 p6
U13 p6
U13 p8
U6 p8
U7 p6
U7 p8
U20 p6

U41 p6
U58 p9
U58 p10
U58 p7
U58 p6
U46 p10
U46 p9
U14 p8

u19 p12

Edge connector
J10 p7B
J10 p6B
J10 p5B
J10 p4B
JlO p17B
J10 p16B
JIO p15B
JlO p13B
J10 p39B
JIO p38B
JlO p36B
JlO p35B
JIO p56B
J10 p54B
JlO p53B
JIO p52B
J10 p27B
J10 p9A
J10 p22B
J10 p21B
J10 p l l A
J10 p12A
J10 p39A
J10 p13A
J10 p34B
J10 p33B
,J10 p34A
J10 p31B
J10 p31A
J10 p33A
J10 p36A
J10 p38A
JlO p35A
J10 p lA
J10 p2B
JlO p5A
J10 p8A
JlO plOA
J9 p21A
J9 p26C
J9 p27C
J9 p52B
J9 p52C
J9 p44A
J9 p54C
J9 p49C
J9 p48C
J9 p5B

16

Table 11. Test Signals

[An asterisk indicates active when signal low]

Signal
A*

Board
CPU

Pin
J9 p24B
JlO p l lB
J10 p44A
J10 p6A
J10 p19B
JlO p18B
JlO p29B

17

Use
External clock
Clock
Clock
Trigger injection
Input data
Instruction
Output data

Table 111. List of Pins Tested

[An asterisk indicates active when signal low]

Board
CPU

No.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 v

Signal
SRAM15
SRAM15
SQOO
SQOO
LINK
LINK
IND
IND
RPTOV*
RPTOV*
QBIT
QBIT
CON
CON
TIB*
TIB*
TDR*
TDR*
IRO 1
IRO 1
SRAMOO
SRAMOO
COUT
COUT
SPAO
SPAO
UlO
u10
DAT15
DAT 15
DAT07
DAT07
DATOO
DATOO
Y 00
Y 00
DO0
DO0
MAR15*
MAR15*
MAR07*
MAR07*
MAROO*
ML4R00*
UMAl
UMAl

Proc7
Processor
-

"

Chip
u11
u11
u11
u11
U13
U13
U13
U13
U28
U28
u12
u12
u12
u12
u20
u20
u20
u20
u35
u35
u35
u35
u35
u35
u35
u35
u35
u35
U30
U30
U31
U3 1
U3 1
U3 1
u34
u34
u37
u37
u39
u39
U42
U42
u43
u43
u45
u45

Pin

P7
P7
P9
P9
P8
P8
P6
P6
P15
P15
P6
P6
P8
P8
P6
P6
PI1
PI1
P3
P3
PI6
PI6
P33
p33
P4
P4
P12
P12
P2
P2
P2
P2
PI9
PI9
PI9
PI9
PI9
PI9
P14
P14
P14
P14
P20
P20
P7
P7

pault type
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
S A0

18

Table 111. Continued

No.
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Signal
UMAO
UMAO
Y 15
Y 15
ESTRT*
ESTRT*
EMSB*
EMSB*
ESPC*
ESPC*
EBCH*
EBCH*
ETIR*
ETIR*
ELSB*
ELSB*
HALTM*
HALTM*
IAM*
IAM*
IRS
IRS
HLTLP
HLTLP
U30
U30
u54
u54
FOV
FOV
FLAG2
FLAG2
FLAGl
FLAGl
SPBO
SPBO
QIO*
&IO*
QII*
QII*
NORM*
NORM*
MEM*
MEM*
MM*
MM*
QIOIN*
QIOIN*
MI*
MI*

Processor
Proc7

Board -
C

T C

J
Chip
u45
u45
u33
u33
U70
U70
U70
U 70
U70
U70
U70
U70
U70
U70
U6 1
U61
U64
U64
U62
U62
uo9
uo9
U65
U65
U67
U67
U68
U68
U06
U06
U71
U71
U71
U71
U27
U27
U32
U32
U32
U32
U32
U32
U32
U32
u44
u44
U05
U05
u35
u35

Fault type
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
SA 1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0

19

Table 111. Concluded

TC
No.

97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136 "

Signal
PST
PST
BOSCl
BOSCl
BOSC*
BOSC*
ACK"
ACK*
PON
PON
FWOT
FWOT
EOUT*
EOUT*
POS
POS
CDE02*
CDE02*
CDEOl*
CDEO1*
MMI 1 *
MMI1*
MMI2*
MMI2'
MEMI*
MEMI*
MEM2*
MEM2*
WE1
WE1
WE2
WE2
QMI*
QMI*
AI*
AI*
B*
B*
BBUF
BBUF

~

Processor
Proc 7

20
I

I

Chip
U13
U13
U14
U14
U 14
U14
U14
U14
u 19
u 19
u20
u20
U04
U04
u20
u20
U46
U46
U46
U46
U46
U46
U46
U46
U58
U58
U58
U58
U6 1
U6 1
U6 1
U61
U38
U38
U08
U08
U08
U08
U14
U14

~

Tault type
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0
5a1
5a0

PROCESSOR A

c ERROR
COMPARATOR

I

PROCESSOR B

P i n f a u l t f ree

Figure 1. Self-checking dual processor.

P i n w i t h f a u l t p r e s e n t L

H
DE

Figure 2. Dynamic error behavior definition.

TBE = t i m e between e r r o r s

DE = d u r a t i o n of e r r o r s

I- TBE --I

21

I

0
In
m

0
0
m

0
Ln
N

0
0
N

0
m
4

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 a3 ul
?I 3 3

N * N 0 co a *
4 3 3

n m
C

In
c\I ,-+
II

a,
rl
U
h
U

4
v

v,
a,
4
U
h
U

w
F4 w

0

22

23

I

0 0 0 0 0 0 0 0
0 0 0 a * N

0 0
0 0 0 0 0 0 0

0 cc a * N 0 03
N 4 4 d d

I

0 0 0 0 0
0 0 0 0 0

In 0 In
d d

0 ul
c\I hl

0 0 0 0 0
0 0 0 0 0
0 In 0 In 0
In * e 0 m

E

d

25

0
Ln m

0
0
m

0
ul
N

m
C

L n
N
4

0

N
0 11

a,
rl
U
h
U

4
v

m

4 2
U

W
F9
b

0
0
4

0 vr

0 0 0 0 0 0 0 0 0
03 fi u3 Ln * m N 4

26 i

W
m
I-

I-
a
0

4

.L

l-
a
0

4

cn
(D
m
m
(u
3

0
a

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

I

+ drI+

0
0
hl

In
I-
d

0
In
d

In
hl
d

In
b

0 In
rl e4

27

W
0

l-

0
a

+

+

+

+

+

+

+

t

+

+

+c

+

+

0
In
d

In
N
d

In 0 In 0
h In N

W

I-
m

+
0
a

+

+

+

+

+

+

+

+

+

cI)I

II)(

II)(

+ 0

+ 03

+ 0

+ a 3

+ 0

+ + m [7E

I

+ + a I +

+ + 8 m

+ + m ID

+ + a C D

8 D

8

m

8

8

8

8

m

in
N

0 In 0
b in 0

in in 0
N b in

3 d 4 4

0
0
N

h

29

0
U
A
N

0
U
V
N
V

0
m

0 m

N

0
N 4
0 N

”
N
V

c

0
U 3

0
N 3

0 0
0 m
3

0
U

~

0 0
N

-J
m
U
U
m .‘)
m

Lj
M
b

-
cd

a,
e
- -
cd

> v)

k a

3
3

0
VI 0

U
0
N

31

c
U

N

0 0 Lrr
hl

0
U

0 0 0
0 OD \D

0
N

A 4

32

b
.d

33

I Lr
0
P-

O
ro

0
VI

0
m

0
U

0
N

0

34

i

0
U
A
N

1

O 0 0 0 0
m N 4

0
U

10

0
ln 0 0

P- a m

35

F - a m

I

H

a, &

1
hD

rn

1

C
U
A
[\:

n

37

0
U
A
N

I I
0 0 0 0 0

-3 W N 3
0 0
rD ln

m

30

i

5
bD

I , 2
0 0 0 0 0

N 4 -3 m
0 0 0
r. rD m

m .r(

39

State = (G,A,R)
G = Processors without faults
A = Processors with faults
R = Processors reconfigured
6 = Recovery process rate
1 = Rate of failure to A

Figure 21. Model of failure arrival-recovery process.

DATA
REGISTER

MEMORY

BUFFER

L k X = "STRUCTION
R

H R A N
A U T A SHIFT IN c, LOGIC

CARRY IN
REPEAT

COUNTER A INSTRUCTION

! y g k
MAIN REGISTER

I 1
PROCESSOR LOGIC

MICRO-ADDRE SS
, CONTROL LOGIC , I . I. I II I1

REGISTER

TIMING & CONTROL
SIGNALS I

Figure 22. Block diagram of the BDX-930.

i

I

t

EXTENSION CABLE BDX - 930

I DATA ACQUISITION PROBES I
Figure 23. Experiment configuration.

I

t

41

Report Documentation Page

. Report No.
NASA TP-2738

2. Government Accession No. 3. Recipient’s Catalog No.

A Technique for Evaluating the Application of the Pin-Level
Stuck-At Fault Model to VLSI Circuits

. Title and Subtitle

I September 1987
5. Report Date

16. Performing Organization Code

. Author(s)

Daniel L. Palumbo and George B. Finelli

. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

8. Performing Organization Report No.

L- 16269
10. Work Unit No.

505-66-21-01
11. Contract or Grant No.

2. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. Supplementary Notes

13. Type of Report and Period Covered

Technical Paper
14. Sponsoring Agency Code

6. Abstract
Accurate fault models are required to conduct the experiments defined in validation methodologies
for highly reliable fault-tolerant computers (e.g. , computers with a probability of failure of
for a 10-hour mission). This paper describes a technique by which a researcher can evaluate the
capability of the pin-level stuck-at fault model to simulate true error behavior symptoms in very
large scale integrated (VLSI) digital circuits. The technique is based on a statistical comparison of
the error behavior resulting from faults applied at the pin-level of and internal to a VLSI circuit.
As an example of an application of the technique, the error behavior of a microprocessor simulation
subjected to internal stuck-at faults is compared with the error behavior which results from pin-level
stuck-at faults. The error behavior is characterized by the time between errors and the duration of
errors. Based on this example data, the pin-level stuck-at fault model is found to deliver less than
ideal performance. However, with respect to the class of faults which cause a system “crash,” the
pin-level stuck-at fault model is found to provide a good modeling capability.

19. Security Classif.(of this report)
Unclassified

L7. Key Words (Suggested by Authors(s))
Fault tolerance
Fault injection
Recovery mechanisms
Fault models

20. Security Classif.(of this page) 21. No. of Pages 22. Price
Unclassified 44 A03

18. Distribution Statement
Unclassified-Unlimited

Subiect Category 38

NASA FORM 1626 OCT 86 NASA-Langley, 1987
For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

